
ImonCloud: Easing Development and Deployment
for Scalable Networked Games

Shun-Yun Hu
IIS, Academia Sinica, Taiwan, R.O.C.

syhu@iis.sinica.edu.tw

Matthew Lien
Imonology Inc., Taiwan, R.O.C.

BlueT@imonology.com

Abstract—The number of small, independent game developers
has grown recently due to the widespread of game creation tools
such as Flash and Unity3D. However, adding multi-user support
is still uncommon due to the amount of server and network
knowhow required. Small developers thus are confined to making
simple single-player games. This paper presents ImonCloud, a
scalable system designed to easily add multi-user and spatial
interactions for otherwise single-player games. Developers only
need to focus on writing the game logic in JavaScript, the
game’s deployment and scaling is then done transparently. Clients
connect to servers closest to them, while game logic is executed
at nearby servers to reduce latency. Server redundancy is also
provided to ensure the operation’s reliability. Built-in support
based on Spatial Publish/Subscribe (SPS) also allows developers
to perform interest management with ease. ImonCloud thus
lowers the barrier of developing multi-user, spatial games that it
becomes possible for small teams and even individuals to make
scalable and globally deployable games.

I. INTRODUCTION

There is a long history of how networked games are devel-
oped. Although originally single-player, when LANs and dial-
up Bulletin Board Systems (BBSs) become available, simple
client-server games allow multiple players to engage in Multi-
user Dungeons (MUDs), where players could roam and role-
play in connected rooms by typing text commands and reading
descriptions.

When networked devices (e.g., modems and network cards)
became common in early 90s, first-person shooter (FPS)
appeared as a popular genre where tens of players can connect
to a central host to engage in fast-paced actions [1]. All users
send events to the server, which processes the events to modify
the game states. The server then sends back updates to each
player to display locally. Around the same time, real-time
strategy (RTS) allows multiple players to engage in fully-
synchronized games with lots of interacting units. As RTS
often supports thousands of object units, sending state updates
directly is not feasible for the typically limited bandwidth,
so RTS games only exchange player events (i.e., commands)
among all hosts, and each host performs its simulation locally
(i.e., each host fully simulates the game). As Internet became
widely adopted, both FPS and RTS also moved from LAN to
more players across WAN.

In the mid-90s, Massively Multiplayer Online Game
(MMOG) genre allows thousands of players engage in the
same epic story. They provided deep social interactions that
allow players to not only role-play in carefully crafted stories,

but also engage in diverse types of social behaviors. MMOGs
became the dominant online game genre in mid-2000 with
Blizzards release of World of Warcraft (WoW), which had a
peak of 11 million active subscribers.

Since 2008, casual web games utilizing social networks to
allow game-play with real-world friends emerged as another
form of dominant games. The rise of social games match
well with the more connected, yet fragmented time nature of
Internet users, while bringing more people to play games that
were not traditional game-players.

From MUD, FPS, RTS, MMOG, to social games, regardless
the games nature or audience, developing smooth interaction
experiences has always been non-trivial to developers. Only
the most technically advanced or resourceful developers were
able to provide great multiuser experiences. Among the chal-
lenges are [2]:

Consistency: at the most basic level, networked games
require players to see a shared view of the world, and
experience interactions with more or less the same sequence
and types. This implies that game states should be processed
in the right order, and delivered or presented to players in the
same sequence.

Interactivity: engaging games require players to see each
others response quickly, though latency requirements differ
among game genres. Actions games may need to deliver
packets in less than 150ms, while MMOGs can allow latencies
up to seconds. Ensuring latency bounds across geographies is
especially challenging for globally deployed games.

Scalability: The usage and demand for todays Internet
games differ greatly during the games lifetime, days in a week,
and even hours in a day. Being able to support concurrent
players at various scales thus is important for game operators.

Reliability: Commercially deployed games typically need
to be available 24 by 7. Although typically there are scheduled
downtime for servers to fix bugs or apply new content, unex-
pected downtime due to bugs (i.e., logic errors) or overloading
are unacceptable to players and may ruin the games reputation
and loyalty.

Persistency: While early FPS or RTS are session-based
(i.e., no player records exist after the session ends), keeping
player or world states intact throughout different sessions
was the default design for MMOG and social games. Storing
such records in a persistent database thus has already become
standard practice in the industry.



Security: Game-play experiences should execute according
to certain designed rules, though some players will always
attempt to modify game rules or network packets for unfair ad-
vantages. Anti-cheating measures ensure that such attempts do
not succeed. Another aspect is the protection of player account
or personal information, though the latter is more generic to
all information systems. Most game systems nowadays adopt
a basic client-server model where clients can only send in user
commands (i.e., events) but not execute any key game logic,
to protect state updates as being authentic.

Developing or transforming a single-player experience into
multi-player thus is not trivial, and may involve the following:
• Define game states and game logic to fulfil design

requirements.
• Define network packets and protocol to convey

events and state updates.
• Design security measures to minimize the impact of

packet modifications.
• Find the right deployment configuration to minimize

latency for the gamers.
• Partition the server workloads to scale the concurrent

user size.
• Develop effective procedures to identify and test

transmission and logic bugs.
These are not easy tasks for small developers to tackle,

we thus seek to design an architecture and methodology that
may ease these difficulties. This paper presents the design and
architecture of the ImonCloud system, which is a commercial
cloud platform developed by Imonology Inc., with technology
transfer from Academia Sinica, Taiwan. The main contribution
of this paper is the design of a practical system that integrates a
number of research concepts to bridge the gap between state
of the art research works in scalable networked games and
actual industrial adoption of such research.

A. Generic Game Loop

We first explain a generic structure for multi-player games
(see Fig.1). Networked games typically consist of multiple
players (also known as actors) that follow an iterative process-
ing loop executed continuously to feed in events (i.e., player
actions) to the server (i.e., an arbitrator of state changes),
processed by the game logic (i.e., rules on what events trigger
what responses), to modify game states (i.e., variables storing
the current internal states), and send back state updates (i.e.,
modification instructions to game states) to players to update
their local views of the game. Note that typically a player sees
only a local/limited view of the global states (such as FPS /
MMOG), though for games such as RTS, all players have the
same global view of the game states. So this event - processing
- update cycle defines a typical game loop.

As a game developer, the three main tasks to deal with are:
1) identify the game states and how will they be stored (as data
structures); 2) define how game states are modified according
to game logic, and 3) how player actions can be encoded as
events, while changes to the local player states can be encoded
as updates.

Fig. 1. event model in a generic game

B. Conversion Example

To demonstrate how a single player game may transform
into a multiplayer game, let us use a simple tic-tac-toe game as
an example. A typical gaming procedure involves two players
in a tic-ta-toe game, each taking turns to send in their decisions
to place the next move. A single-player game will require an
AI module to play against the human player. So the game flow
basically involves the following:

1) the user makes a move, captured as an event
2) the event is evaluated for correctness and state updates
3) the AI makes a move, encoded as an event
4) the event is evaluated for correctness and state updates
5) results of the evaluation is displayed
6) repeat the process or end the game
In order to make it into a multiplayer game, the above

procedure may need to change into:
1) userA makes a move, captured as an event
2) userA’s event is sent to the server
3) server evaluates the event for correctness and state

updates
4) results of the evaluation is sent back to userA and userB
5) results of the evaluation is displayed at both users
6) userB makes a move, captured as an event
7) userB’s event is sent to the server
8) server evaluates the event for correctness and state

updates
9) results of the evaluation is sent back to userA and userB

10) results of the evaluation is displayed at both users
11) repeat the process or end the game

We can see that additional communications of events and
updates are needed. If the game logic that processes user
events can take events as inputs and produces updates as
output, then the same single-player logic may also be used
at the server. However, if not, then some additional works are
required to modify the game logic to accommodate this model
for multi-player interactions.



C. Practical Issues

Commercial games are often provided as a service with
continuous operations, as such, gamers expect the system to be
operational without unexpected downtimes. The system should
also be secure, fair, and responsive. Such quality of service
(QoS) guarantee is expected regardless of the current system
load. As such, maintaining the same QoS despite of sudden
user increase is the main scaling issue for online games. [3]

Latencies experienced by game players can be attributed to
two sources: network latency (i.e., the transmission of packets
over Internet) and system latency (i.e., the processing of the
packets by applying game logic calculations). The former can
be influenced by many factors typically not controlled by the
game operator, especially if the game is deployed at a single
site; while the latter may be minimized with good architectural
design and engineering, to ensure that event processing is
efficient, and the handling server does not become overloaded.
Ensuring that the servers do not overload (whether by limiting
user login, or performing load migration), thus are necessary
to ensure the expected QoS.

II. IMONCLOUD ARCHITECTURE

ImonCloud is designed to reduce the efforts to develop
interactive applications by three main approaches: 1) provide
a standardized way to write and execute game logic, such that
the game logic can be deployed and scaled automatically and
transparently without requiring networking knowhow or code
changes; 2) provide automatic load balancing and connection
by proximity so that users connect to the closest entry servers
to join the system, operators thus do not have to worry about
where and how to deploy optimally (i.e., code execution will
migrate to where most users are located), and 3) provide spatial
publish / subscribe (SPS) as a primitive API so that developers
need not handle the difficult interest management. In short,
ImonCloud provides developers with a unified development
and deployment environment so that they can focus on game
logic design and testing, while reducing their engineering
efforts on development, deployment, and operations.

We leverage the rich body of existing research on scalable
networked virtual environments (NVEs), especially the works
based on peer-to-peer (P2P) techniques, as they provide var-
ious conceptual and theoretical ideas on how such a devel-
opment platform can be built. Specifically we have leveraged
three main ideas:

Object (entity)-based Partitioning For games with maps
(e.g., MMOG, RTS, FPS), the map is often spatially parti-
tioned by rectangles or hexagons to different regions, where
each region is assigned to a particular server to distribute
loads. This has the benefit of congregating all relevant states
at the same host for computation. However, if the server fails,
all region data managed will be lost. Alternative partitioning
approaches have since been proposed [4], where the load is
divided by entities in the system and assigned to arbitrary
servers. As long as game states, game logic, and user events
are available at the same processing node, user events can
be processed correctly and game states updated accordingly.

This design has the benefit that when a particular server fails,
subsequent event handling can be simply re-routed to any
remaining servers, without facing service interruption or game
state loss.

Spatial Publish Subscribe Publish / subscribe (pub/sub)
is a messaging mechanism where only subscribers of a given
interest will receive messages from publishers that match the
interests. This provides the benefit that subscribers or publish-
ers need not know about each other [5]. The most basic form
of pub/sub is channel-based, where publishers deliver message
to a particular channel subscribed by interested parties. More
advanced pub/sub may involve filtering based on more specific
relations (i.e., content-based pub/sub). We utilize a specific
content-based filtering called spatial publish/subscribe (SPS)
[6], where publishers and subscribers specify their interests
as 2D areas, so that a given message is delivered only if the
publication area overlaps with the subscription area. An area
can be rectangular or circular, and can also be of zero-radius
(a point publication/subscription).

Voronoi Self-organizing Overlay (VSO) To provide SPS
services, we utilize Voronoi Self-organizing Overlay (VSO)
[6], which is a technique to divide a space into various regions
based on Voronoi partitioning, such that the region size can
be automatically adjusted according to the region’s loading.
The load is defined as the number of connected users to
a given Voronoi region. Voronoi partitioning has the benefit
that the least number of regions need to exist for a given
load distribution. Also, as the partition hierarchy is flat (as
compared to alternative partitioning such as trees), there is
better fault tolerance if a given node fails to manage the
partition.

A. SCALEM Component Model

Fig. 2. the SCALEM component model for ImonCloud

We now describe the main components in ImonCloud,
which can be collectively abbreviated with the SCALEM
acronym, taking the first alphabet of each main component
in the ImonCloud system:



Storage Important game states should be written to a
database (DB) and stored permanently. We choose the NoSQL
MongoDB for its flexibility and support of cluster configura-
tion. We assume that the DB is scalable by its own design and
can be logically seen as a single server. Note however that
ImonCloud’s scalability does not rest on the DB, but rather
on the architecture of the logic execution environment.

Communication A unique and core design of ImonCloud
is its adoption of a Communication Layer for all event/update
traffic between clients and servers, and also among the servers.
The layer provides both channel-based pub/sub and spatial
pub/sub (SPS). By leveraging SPS for client-server com-
munications, we effectively shield the client from knowing
which server is processing its events, so that architecturally
it becomes possible for different servers to handle events
from the same client at different times (i.e., as in Object-
based partitioning approaches). Likewise, the server has no
knowledge of where the client is located or how to transmit
updates to the client, simplifying the workload of the logic
server.

App The main game logic is executed at the App Server,
and it is assumed that each event can be correctly processed by
the game logic, as long as the states and logic relevant to the
event are available. So for a given incoming event, if an App
Server can access and modifies all the relevant game states,
then we can assign event processing to different App Servers,
without impacting the results of logic processing, effectively
balancing the loads among servers. This is similar to how
web servers scale and handle increasing traffics. By moving
game logic processing from a simple client-server model to
more of a web model, App Servers are designed to scale
to process more events as users or workload increases. This
approach has traditionally been difficult to replicate for online
games (especially games based on maps), because there is no
straightforward methods to partition game workload and assign
them evenly. ImonCloud attempts to achieve this even and
balanced workload assignment via the Communication Layer.

Lobby The Lobby Server is the similar to App Server in
that it executes game logic, with the difference that it also
maintains certain game states of global (i.e., system-wide)
relevance. For example, the full list of currently online users,
and aspects related to accounts or payment.

Entry Entry servers are proxies to which the game clients
connect and maintain connections. When a user client wishes
to join the system, it first performs a short check to find
the Entry Server with the lowest latency. It then establishes
a connection to that Entry Server for the duration of the
game session. All events and updates to/from the servers
are communicated via this Entry Server, which may in turn
communicate with the Communication Layer (e.g., to perform
channel or spatial pub/sub).

Monitor Monitor servers are the ones that keep an eye on
the liveness of other servers, and will re-start them if necessary.
ImonCloud is designed such that the start/stop of any single
server will not impact its ongoing operation.

B. Logic Execution Environment

We now describe how developers will build a networked,
multi-user game using ImonCloud, and what tools and API
are available for the development. Events are app-specific and
may be defined by developers in the form of a JSON message,
for example:

Fig. 3. a movement event data encoded in JSON format

Where E indicates the event name; and P indicates the
parameters sent. The parameter is fully customizable by the
developer. Events are received and processed by a currently
live App Server. However, developers may also leverage SPS
functions to limit how the event may be delivered or processed.
For example, after receiving a login event, the relevant game
logic may do the following:

Fig. 4. Code example for how a login request is handled

The above code allows this particular client to define and
limit its interaction scope with an AOI, and will from that
point on, only receive updates within its subscribed area.

C. Spatial Interest Management

For spatial games, each user is often interested in a particu-
lar Area of Interest (AOI) that centers on the user and moves
with the user. ImonCloud provides five basic SPS primitives
to perform spatial operations:

A user can subscribe a given area with a specific center point
and radius, if the radius is 0 then it is a point subscription.
Otherwise it can be an area subscription. Similarly, users
can also publish to an area with 0 or non-0 radius (i.e.,
point publication and area publication). Both publish and
subscribe operations are performed at a given layer, which
provides logical separation of pub/sub interests within the
same coordinate systems. That is, pub/sub requests will not
be matched if they are on different layers. Publish/subscribe
requests do not specify receivers, so a sender generally does
not know who will receive a particular message. However,
in situations when a sender may want to send messages to



Fig. 5. interface definition for spatial operation methods

a particular user (for example, a one-to-one chat), the sender
may use list to first get a list of neighboring users within a
given area, then the user can use send to send a message to a
particular user based on its unique id.

D. Load Migration

There are two mechanisms for load migration in ImonCloud,
one is the partitioning of spatial workload using Voronoi
partitioning, the other is the specific migration and setup of
a new logic execution environment (i.e., App Server) when
existing ones are overloaded. Of particular note is that our load
migration is adjusted automatically based on actual workloads,
instead of manual control. We utilize VSO [6] for the load
migration, where the SPS functions are realized by utilizing
a VSO. We describe the two load migration mechanisms in
details below:

Spatial Messaging Spatial messages are processed by the
Communication Layer using a SPS interface as previously
described. The whole virtual world map is first divided into
various regions, each managed by a matcher node. Matchers
are basically servers that store and update the pub/sub info
collectively and form a P2P network among themselves [6].
Matchers thus divide the entire map using Voronoi parti-
tioning, such that each region has a center point of which
the managing matcher may move. By communicating with
neighboring matchers constantly about its own workload, a
matcher can move toward or away from the center points
of its neighbors, effectively modifying the shape and size of
the region it manages. This way the loading (i.e., density
of user subscriptions) can be controlled within a preferred
limit in each region, achieving balanced load among the
matchers. The collection of the matcher servers constitute the
Communication Layer.

Note that because each matcher can set its own workload
limit based on its resource availability such as CPU and RAM,
the final managed region size may differ in sizes.

As all pub/sub requests are routed by the matchers, balanc-
ing the loads among matchers effectively achieve load balance
for interest management as well. Matchers make P2P connec-
tions with their neighbors only on a need-basis, such that only

if users within its managed regions have subscription interests
in the areas managed by other matchers, will the matcher make
a connection to it. As long as the user subscription area has a
fixed upper size and the user density is being controlled, the
number of neighboring matchers to connect will be bounded
as well.

Code Execution Besides load migration for messaging
(which is IO-bound), another factor to host loading is CPU
usage. Actual CPU usage on each logic execution node (i.e.,
the App Server) has two components to it: number of users
being managed and how complex their scripted behaviors
are. While the first aspect may be controlled with the spatial
messaging load migration, the second aspect is something
controllable only by the developer.

However, ImonCloud can still migrate code execution as
closely as possible to where most of the affected users are
located, so that the response time of logic execution can be
less impacted by how far the users and the App Servers are
located, cutting the communication time.

The approach we use is to start the App Server first
at a more or less random physical location, but monitors
where most requests are coming from (requests may come
from either an Entry Server directly, or passed by a node
in the Communication Layer). The App Server would then
monitor constantly how far away it is from the center of logic
execution. That is, whether it is at a location close to most
users sending requests to its logic.

If it is determined that there may be another App Server
more suitable to execute the logic, it may then request that
particular App Server to start executing the game logic and
taking new requests from the users, while shutting itself down
when the number of requests it processed is below a certain
threshold. As all game logic are script based, they can be easily
send between App Serves and executed on-the fly. New App
Servers can join the logic execution by simply running up and
joining at a virtual location with the rest of the App Servers.
The above spatial messaging migration algorithm would then
shift loads among the existing App Servers.

E. Deployment Setup

To allow Entry Servers provide the shortest possible laten-
cies when user clients are interacting, actual Entry Servers
should be deployed across different geographies. The assump-
tion here is that by connecting to a physically close (i.e., with
short latency) Entry Server, a client will have shorter round-
trip latency with a Lobby/App Server at another geography,
than if the client connects to the Lobby/App Server directly.
This is because often times client-server connections can
route through various paths of different qualities, whereas link
qualities between servers are often more stable [7].

When a user connects to ImonCloud, there is a client-side
network module that first contacts a few (at least three) Entry
Servers from its cache, then a decision is made to make a
permanent connection to one of the Entry Servers for this
gaming session. Once a connection is established with the



Entry Server, all subsequent communications with ImonCloud
are done over this connection.

The Entry Server then connects with the actual Lobby or
App Servers to perform client-server communication (acting
on the user clients behalf), though it can also make pub/sub re-
quests to the Communication Layer, in case spatial operations
are desired. As mentioned earlier, a user may send events to
the server logic to indicate an interest to subscribe or publish,
such requests will modify the users Entry Server behavior, to
subscribe for particular areas on behalf of the client with the
Communication Layer. Subsequent communications with the
App Server (most likely) will be done through the client ↔
Entry Server ↔ Communication Layer ↔ App Server link.

F. Short Iterative Development

To reduce iteration time, we allow developers to make
server-side code changes directly within a browser-based on-
line editor, while the changes are immediately hot-reloaded as
part of the currently executing functions. Often times, devel-
oping multi-user server applications require extensive testing
and debugging over network and logic issues. Traditionally
this process looks something like:

1) Make code changes locally
2) Compile and test code changes
3) Upload new / modified code to server
4) Shutdown server
5) Restart server
6) Test code changes with client
With ImonClouds online editor and hot code reload, devel-

opers are able to make code changes directly with the online
editor, while the changes in script, because they can be parsed
dynamically, the changes / updates are reflected immediately.
The amount of time to iterate a given modify-verify test cycle
thus can be reduced dramatically.

III. CURRENT PROGRESS

Currently we have implemented the logic execution environ-
ment, as well as the basic SPS operations at the Communica-
tion Layer. A prototype Entry Server is also available, though
currently it connects directly with Lobby or App Servers,
and does not yet support performing SPS operations with the
Communication Layer.

Regarding scaling and deployment, ImonCloud currently
can start/stop App Servers based on the number of connected
users, though it does not yet support starting new servers
at a different geography and performing code migration, as
currently we only have deployment in one geographic area.
We expect these features to become available as our deployed
servers exist at different geographies.

Code migration to other App Servers to reduce communi-
cation time between users and their App Servers is not yet
done, and as a first step we may simply replicate logic scripts
at all the App Server, and only test for dynamic App Server
startup to handle workload, before performing on-the-fly code
migration.

IV. CONCLUSION

Developing, deploying and operating online games are no
simple tasks for game developers. We design ImonCloud to fa-
cilitate this process by providing the spatial publish/subscribe
(SPS) construct, so that players can receive relevant messages
by only specifying spatial interests. To ease deployment, devel-
opers can place their code just once, and deploy globally using
proximity execution, so that the game logic is executed at a
server close to the player, reducing communication latencies.
Finally, to ease operations, App Servers that execute game
logic can always be dynamically adjusted, both in number
and location. With just enough redundancy, the crashing of
any single server will also not harm the normal operations of
the game.

We are in the process of deploying the first version of
ImonCloud by hosting of a commercial game. However, as the
initial deployment is limited in one geography, we may only
evaluate “proximity execution” to a limited degree. Evaluating
the usage of SPS in ImonCloud will be carried out by some
experiments simulating a large number of player entities. Also
on the plans are to work closely with game developers on
the usage and adoption of ImonCloud, so that its benefits,
limitations can be more visibly found and demonstrated.

REFERENCES

[1] A. Bharambe et al., “Donnybrook: Enabling large-scale, high-speed, peer-
to-peer games,” in Proc. SIGCOMM, 2008.

[2] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: A scalable peer-to-peer
network for virtual environments,” IEEE Network, vol. 20, no. 4, 2006.

[3] Y.-T. Lee and K.-T. Chen, “Is server consolidation beneficial to mmorpg?
a case study of world of warcraft,” in Proc. 2010 IEEE 3rd International
Conference on Cloud Computing. ACM, 2010, pp. 435–442.

[4] J. Waldo, “Scaling in games & virtual worlds,” ACM Queue, vol. 51,
no. 8, 2008.

[5] M. Tayarani Najaran and C. Krasic, “Scaling online games with adaptive
interest management in the cloud,” ser. NetGames ’10. Piscataway, NJ,
USA: IEEE Press, 2010, pp. 9:1–9:6.

[6] S.-Y. Hu and K.-T. Chen, “Vso: Self-organizing spatial publish subscribe,”
in Proc. Fifth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2011), 2011.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentralized
network coordinate system,” in Proc. SIGCOMM, 2004.


